Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Pediatr Res ; 83(1-1): 119-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28820871

RESUMO

BackgroundFetal alcohol syndrome (FAS) is caused by maternal alcohol consumption during pregnancy; although additional factors might be involved, as development and severity are not directly related to alcohol intake. The abnormal glycosylation caused by alcohol might play a role in FAS according to the clinical similarities shared with congenital disorders of glycosylation (CDG). Thus, mutations underlying CDG, affecting genes involved in glycosylation, could also be involved in FAS.MethodsA panel of 74 genes involved in N-glycosylation was sequenced in 25 FAS patients and 20 controls with prenatal alcohol exposure. Transferrin glycoforms were evaluated by HPLC.ResultsRare (minor allele frequency<0.009) missense/splice site variants were more frequent in FAS than controls (84% vs. 50%; P=0.034, odds ratio: 5.25, 95% confidence interval: 1.3-20.9). Remarkably, three patients, but no controls, carried variants with functional effects identified in CDG patients. Moreover, the patient with the most severe clinical phenotype was the only one carrying two variants with functional effects. Family studies support that the combination of a genetic defect and alcohol consumption during pregnancy might have a role in FAS development.ConclusionsOur study supports that the rare variants of genes involved in N-glycosylation could play a role in the development and severity of FAS under prenatal alcohol exposure.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Transtornos do Espectro Alcoólico Fetal/genética , Predisposição Genética para Doença , Mutação , Adolescente , Adulto , Alelos , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Defeitos Congênitos da Glicosilação/complicações , Feminino , Variação Genética , Glicosilação , Humanos , Lactente , Masculino , Exposição Materna , Pessoa de Meia-Idade , Mães , Razão de Chances , Gravidez , Estudos Retrospectivos , Análise de Sequência de DNA , Transferrina/química
3.
Am J Hum Genet ; 98(2): 363-72, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833329

RESUMO

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Assuntos
Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Obesidade/genética , Fatores do Domínio POU/genética , Deleção de Sequência , Adolescente , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Índice de Massa Corporal , Linhagem Celular , Criança , Pré-Escolar , Cromossomos Humanos Par 6/genética , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Pessoa de Meia-Idade , Ocitocina/metabolismo , Fatores do Domínio POU/metabolismo , Linhagem , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adulto Jovem , Peixe-Zebra
4.
Am J Med Genet A ; 167A(4): 786-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655674

RESUMO

The 10q26 deletion syndrome is a clinically heterogeneous disorder. The most common phenotypic characteristics include pre- and/or postnatal growth retardation, microcephaly, developmental delay/intellectual disability and a facial appearance consisting of a broad nasal bridge with a prominent nose, low-set malformed ears, strabismus, and a thin vermilion of the upper lip. In addition, limb and cardiac anomalies as well as urogenital anomalies are occasionally observed. In this report, we describe three unrelated females with 10q26 terminal deletions who shared clinical features of the syndrome, including urogenital defects. Cytogenetic studies showed an apparently de novo isolated deletion of the long arm of chromosome 10, with breakpoints in 10q26.1, and subsequent oligo array-CGH analysis confirmed the terminal location and defined the size of the overlapping deletions as ∼ 13.46, ∼ 9.31 and ∼ 9.17 Mb. We compared the phenotypic characteristics of the present patients with others reported to have isolated deletions and we suggest that small 10q26.2 terminal deletions may be associated with growth retardation, developmental delay/intellectual disability, craniofacial features and external genital anomalies whereas longer terminal deletions affecting the 10q26.12 and/or 10q26.13 regions may be responsible for renal/urinary tract anomalies. We propose that the haploinsufficiency of one or several genes located in the 10q26.12-q26.13 region may contribute to the renal or urinary tract pathogenesis and we highlight the importance of FGFR2 and probably of CTBP2 as candidate genes.


Assuntos
Deficiências da Aprendizagem/diagnóstico , Anormalidades Urogenitais/diagnóstico , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 10/genética , Hibridização Genômica Comparativa , Facies , Feminino , Estudos de Associação Genética , Humanos , Deficiências da Aprendizagem/genética , Anormalidades Urogenitais/genética
5.
J Pediatr Gastroenterol Nutr ; 57(4): 461-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23752082

RESUMO

OBJECTIVES: There are many differences in the fecal infant microbiota associated with various feeding methods. The aim of this study was to examine the major differences in the fecal microbiota of breast-fed (BF) and formula-fed (FF) infants and to describe the principal bacterial components that would explain the variability in the predominant bacterial families and genus clusters. METHODS: Fecal samples from 58 infants, 31 of whom were exclusively BF and 27 of whom were exclusively FF with a standard formula in agreement with the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition recommendations, were analyzed by fluorescent in situ hybridization combined with flow cytometry. Principal component analysis was used to maximize the information gained for the predominant bacterial families and genus clusters using a minimal number of bacterial groups. RESULTS: The predominant detected group was Bifidobacterium, followed by Enterobacteriaceae and Bacteroides in both BF and FF infants. The Lactobacillus group was the only independent variable associated with FF infants. We also found that 3 principal components were sufficient to describe the association between the bacterial group, genus, and species studied in BF and FF infants; however, these components differed between BF and FF infants. For the former, the 3 factors found were Bifidobacterium/Enterobacteriaceae, Lactobacillus/Bacteroides, and Clostridium coccoides/Atopobium; for the latter, Bifidobacterium/Enterobacteriaceae, Bacteroides and C coccoides were observed. CONCLUSIONS: There is a clear clustering of components of infant microbiota based on the feeding method.


Assuntos
Bactérias , Alimentação com Mamadeira , Aleitamento Materno , Colo/microbiologia , Fezes/microbiologia , Microbiota , Humanos , Lactente , Fórmulas Infantis , Análise de Componente Principal , Especificidade da Espécie
6.
Am J Med Genet A ; 149A(11): 2513-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19842199

RESUMO

Two syndromes with abnormalities of the short arm of chromosome 5 have been described: cri-du-chat (resulting from 5p deletion) and trisomy 5p. We report for the first time a patient with both syndromes, resulting from a complex chromosomal rearrangement with an inverted duplication of 5p13.1-p14.2, a deletion of 5p14.2-pter, and a duplication of 5p12, characterized by array-CGH and BAC clones. The patient showed phenotypic characteristics of both syndromes and died at 3 months of age as a result of cardiorespiratory failure, probably associated with the clinical severity of the trisomy 5p syndrome. We propose a potential causative mechanism for this rearrangement.


Assuntos
Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 5/genética , Síndrome de Cri-du-Chat/genética , Trissomia/genética , Adulto , Bandeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Evolução Fatal , Feminino , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Masculino , Meiose , Fenótipo , Gravidez , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...